
Scanned Synthesis Then & Now – The Design
and Enhancement of Csound’s Scanned Opcodes

Richard Boulanger1 and John ffitch2

1 Berklee College of Music
2 Alta Sounds

rboulanger@berklee.edu jpff@codemist.co.uk

Abstract. Scanned Synthesis was introduced at the 2000 ICMC in
Berlin[1,2]. The underlying algorithm was developed by Max Mathews,
expanded upon and coded into Csound by Paris Smaragdis, and, over
the years, enhanced and expanded further by John ffitch. Recently, when
working to clarify the wording and improve the examples in the Csound
Manual, a number of questions arose such as: What are the differences
between all the scanned opcodes?; How do they interact with each other?;
and How do the scanned opcodes actually work under the hood? While
answering these questions, and coding new examples, the authors real-
ized that there was room for further improvement and that some powerful
optional arguments could be added to support further sonic exploration.
In fact, where the scanned opcodes started, and where they are today
is quite an inspiring story. This paper will tell the story of the birth of
scanu and scans in the mind of Max Mathews, and their current scanu2,
scantable, and scanmap capabilities today.

Keywords: Csound, scanned, scanu, scanu2, scans, scanmap, gen44

1 In the Beginning and At the End

At Bell Labs, in the mid-50’s, Max Mathews developed the first languages for
software synthesis and signal processing - MUSIC I through V. The earliest ver-
sions of his code featured the foundational table-lookup oscillator which allowed
for the efficient playback of any stored “contour” at any rate, pitch or duration.
Given the specific settings and content of the “lookup-table”, it could function as
a Low Frequency or Audio-Rate Oscillator, a Sample Player, a Noise Generator,
an Envelope Generator, and more! In essence, this one algorithm could emulate a
wide assortment of modules on the analog synthesizer that Max was controlling
with computers in his lab at Bell. In fact, combinations and interconnections
of this same algorithm led to Waveshaping, FM, and Granular synthesis. In his
later years, and with a paradigm shift in thinking about the elements in the
oscillator “lookup-table” itself, Mathews, in a new variation of his table-lookup
oscillator created a pioneering new synthesis technique — Scanned Synthesis,
a variation of the table-lookup oscillator that, in and of itself, could behave as a
spectral morphing oscillator, with filter, envelope, LFO, and more. Once again,
Max Mathews had created one algorithm to rule them all!



2 Richard Boulanger and John ffitch

Rather than simply seeing the samples in the table as a solution to some equa-
tion, a plot, a digital representation of an analog pressure wave, a measurement,
an envelope, or a contour, Mathews’ drew inspiration from Newton’s mechanical
model of the “string”, (as masses connected together with springs), and, as in
a Newton’s Cradle, he connected the “samples” in his table to their neighbors.
Moreover, he assigned each of the “samples” a unique mass, and applied proper-
ties of centering and damping to them. This allow each mass (sample) to respond
to gravitational forces and thus to oscillate freely. Finally, he implemented ways
of “exciting” this dynamic “string”, by plucking it, strumming it, pushing it,
and hammering it3

2 The First Wave of Enhancements

During a summer of study at Interval Research, Paris Smaragdis was asked if he
could turn Mathews’ C code into Csound opcodes. Given his deep knowledge of
Csound, Smaragdis thought of ways to expand the scanned algorithm further.
First, he separated the underlying algorithm into two parts, a dynamic table-
surface generator that one could excite by plucking, hitting, pushing, strumming,
and hammering. This became the scanu opcode. Second, he created the scans
opcode, based on a variation of Mathews’ traditional oscillator, to bring the
complex and evolving surface waveform into the audio range. Smaragdis then
identified each scanu surface with a unique ID number that could be read by sin-
gle (or multiple) scans opcodes. Further, knowing Csound as he did, Smaragdis
recognized that many of Csound’s synthesis opcodes “also” used lookup-tables,
and so, he made sure that his scanu ID could be passed around to any op-
code that read a stored function table. In this way, Smaragdis brought new life
to virtually every synthesis technique supported by Csound. With an evolving
scanu table, one could now explore the new sonic worlds of scannedWaveshaping,
scannedFM, scannedSubtractive, and scannedGranular. As a last enhancement,
Smaragdis made it possible for one to excite the surface with audio input and
thus turned Scanned Synthesis into a ScannedVocoder !

According to the original code, Smaragdis knew that he could initialize his
Csound scanu opcode with i-rate settings, as Mathews had done, and thus,
start the surface evolving from different states, on a note by note basis; but, in
Csound, he also knew that it would be possible for him to add a corresponding set
of “krate” inputs to many of the scanu parameters, and that this would allow
for the initial state to be non-uniform4 Further, Smaragdis wondered: “why
only connect the masses in the evolving scanu table, (the samples), to their
neighbors?” To overcome this limitation, he included support for a “connection
matrix”. This addition would allow for the 2-dimensional wave to generate 3-
dimensional surfaces.

3 All from the real-time control of his two “Radio Batons.”
4 For instance, the mass at one end of the table could be the size of a bowling ball
and the mass at the other end could be the size of a pea.



Scanned Synthesis: Design and Enhancements 3

Smaragdis also modified the scans oscillator by adding the ability to use a
function that would allow one to traverse this evolving and turbulent surface
along an arbitrary path, rather than just scanning from one end to another in
a straight line5 In some of his inspiring early examples, Smaragdis showed that
one could have a single scanu followed by multiple scans opcodes, each slightly
detuned and each with unique “trajectories”6.

Max Mathews dream was to use his two radio-transmitting “batons” to de-
form the surface of a complex evolving sound wave as he moved them over his
radio-receiving antenna board. This was one of his main motivations and hopes
for scanned synthesis, that with his hands, he could play with, shape, and mold
rich, complex and evolving timbres. Smaragdis’ implementation of Mathews’
scanned algorithm in Csound gave life to that dream and then some.

3 The Second Wave of Enhancements

Once the scanned opcodes began to be explored and understood, Csounders
noticed that the sound itself tended to be “overly bright”, a bit “raw”, and
sometimes pretty “nasty”. To address these concerns, John ffitch added optional
arguments to the scans opcode that support alternative interpolation modes.
He also added support for larger table sizes in scanu. Csounders also wondered,
“what programs do I use to draw my own connection matrices?” For that, Steven
Yi added a wonderful Matrix Editor to his fantastic Csound IDE BLUE which
allowed one to connect the massed randomly, or by using a mouse to select and
draw the connection on a grid. In fact, from the study of Steven Yi’s beautiful
scanned compositions, one has learned that to “warm things up a bit”, users
should follow their scans opcodes with a lowpass filter, a dcblock, and, for
ear-safety, a limit or clip opcode7 Given the sometimes explosive nature of
scanned synthesis, a variation and simplification of the technique was added to
Csound in the scantable opcode. To “stabilize” the system, things were limited
to a “circular-string” matrix and no dynamic and evolving scanu surface is read.
Still, non-uniform tables can be used for mass, stiffness, centering, etc., and the
resulting waveform can be very rich and evolve in unique ways.

4 The Third Wave of Enhancements

It occurred to some Csounders that it might be sonically interesting if one were
able to read and map individual samples (nodes) from this dynamic scanu sur-
face, and use it as a complex control source for other opcodes. For instance, to
use the oscillations and centering of sample 64 to adjust the cutoff of a filter, and
sample 21 to adjust the frequency of an oscillator, and sample 111 to control the
panning of a stereo instrument. To support this request, John ffitch added the

5 The authors like to think of this as “surfing the wave”.
6 Imagine multiple cameras filming the surface of the pool during a swimming meet
7 Scanned surfaces can be explosive given the wide range of interconnected elements.



4 Richard Boulanger and John ffitch

scanmap opcode which brought a whole new set of possibilities to the scanned
family.

Upon further study, exploration, composition, and design, it occurred to ffitch
that some of the original scanu parameters, such as stiffness, left and right
pluck positions, and a few others were not exactly working in the way that
they were explained in the manual, or in tutorials by Mathews and Boulanger8

Rather than fix, expand, or update the original scanu, and risk breaking a
number of interesting instruments and beautiful pieces, John ffitch added the
scanu2 opcode. Further, to simplify the design of matrix files, ffitch added a
new Gen routine GEN44. And most recently, ffitch expanded the scanmap opcode
to support the reading of all nodes from scanu2 into an array, thus providing
simultaneous access to multiple control signals from a single scanu2 using a
single scanmap!

5 The Enhanced Scanned Family of Opcodes and How
they Work

Let’s see how the current scanu2 opcode has been enhanced and works.

scanu2 init, irate, ifndisplace, ifnmass, ifnmatrix, ifncentr,

ifndamp, kmass, kmtrxstiff, kcentr, kdamp, ileft, iright,

kpos, kdisplace, ain, idisp, id

There are really two sets of arguments here, the “igroup”, and the “kgroup.”
The “igroup”, which consist of init, irate, ifndisplace, ifnmass, ifnmatrix, ifn-
centr, ifndamp, ileft, iright, are used to set the initial state of the system. The
“kgroup”, which consists of kmass, kmtrxstiff, kcentr, kdamp, kpos, kdisplace,
are essentially “push” variables – these allow one to interact with the system
as it is evolving. The ain parameter also has a “push” role but at audio rate
to support real-time audio input into the system. The idisp argument turns on
a display of the evolving wave, and the id argument assigns a number to the
surface being generated which other table-based opcodes use to access and read
the surface.

Some new features of the init argument are now supported. Traditionally,
one used this argument to set the initial state of the system before excitation9

It was referred to as the “hammer”, and although a hammer implies that you
are hitting the masses or setting the system in motion, it is important to note
that it does not set the system in motion10.

Internally there are a number of arrays to represent the masses, and veloci-
ties, (with their position offset from neutral). On each update, the acceleration

8 For example, increasing stiffness made the connections less stiff!
9 This is not an exciter or “hammer-blow”.

10 It is better to think of this as a template to which the masses conform prior to
excitation - an initial displacement shape which can be specified by an f-table whose
size is equal to the number of masses in the system - typically 128



Scanned Synthesis: Design and Enhancements 5

of each mass is calculated from the current velocity and the other masses con-
nected to the mass, as given in the matrix describing the topology of the config-
uration11 In the code below, we see how acceleration is computed from weight,
c(centering) d(damping) kf and kd, m(mass), km, v(velocity), x1[i](last position,
and x0[i](next position).

MYFLT kf = *p->k_f;

for (j = 0 ; j != len ; j++) {

MYFLT weight = p->f[i*len+j];

if (weight!=FL(0.0))

a += (x1[j] - x1[i]) /(weight*kf);

}

a += -x1[i] * p->c[i] * *p->k_c - FABS(x2[i] - x1[i]) * p->d[i] * *p->k_d;

a /= p->m[i] * *p->k_m;

/* From which we get velocity */

v[i] += dt * a;

/* ... and future position */

x0[i] += v[i] * dt;

The original implementation supplied a set of these connection matrices for
a string and a circular string. To allow further experimentation, we now offer
an ftable-generator that reads a simple script and creates a connection matrix.
This ftable-generator is described in section 5.1. For each mass the acceleration is
used to change the velocity from the stiffness of the connection in a simplification
of Newtonian mechanics similar to the finite difference calculation of physical
modeling. The velocity then is used to update the position.

5.1 Designing the Connection Matrix

The newly added GEN44 routine is given a file that specifies the connection matrix
and translates it to the internal structure. The first line of the file should be
<MATRIX size=integer> which is used to create a square matrix of the indicated
size. This is followed by lines of two or three numbers, the first two denoting
a connection from the first to the second. The third number is a weight. If the
third number is omitted, it is taken as having a value of 1. The list is terminated
by a line with the word </MATRIX> or the end of the file. To avoid confusion with
other matrix formats, it is recommended to save this matrix format file using
the extension “.matrxT”

5.2 An Example

In this example, the initial displacement condition (a sine shape) is used because
init is negative. Still, one needs a velocity to set the system in motion12

11 This connection matrix can be used to treat the collection of masses as if they were
many shapes - one, two or three dimensional.

12 The parameters ifndisplace and kdisplace are velocity and acceleration (the first and
second derivative of displacement). The initial velocity is this displacement, as a



6 Richard Boulanger and John ffitch

instr scanmap_Additive

kp[] init 128

kv[] init 128

giTableKP ftgen 100, 0, -128, 2, 0

giTableKV ftgen 101, 0, -128, 2, 0

scanu2 -1, .1, 6, 2, 3, 4, 5, 2, 9, .01, .01, .1, \

.9, 0, 0, 0, 1, 2

kp,kv scanmap 2, 1000, 2

copya2ftab kp, giTableKP

copya2ftab kv, giTableKV

a1 oscil ampdbfs(p4)*kv[8], cpsmidinn(p5)+kp[8]

a2 oscil ampdbfs(p4)*kv[13], cpsmidinn(p5)+kp[13]

a3 oscil ampdbfs(p4)*kv[55], cpsmidinn(p5)+kp[55]

a4 oscil ampdbfs(p4)*kv[89], cpsmidinn(p5)+kp[89]

outs a1+a4, a2+a3

endin

f1 0 128 10 1 ; initial displacement condition (sine shape)

f2 0 128 -7 1 128 1 ; uniform masses

f3 0 0 -44 "string_with_extras-16.matrxT"

f4 0 128 -7 .001 128 1 ; ramped centering

f5 0 128 -7 .1 128 1 ; ramped damping

f6 0 128 -7 .01 128 .01 ; uniform initial velocity

f7 0 128 -5 .001 128 128 ; scans trajectory

i "scanmap_Additive" 0 8 -1 72}

6 Conclusion

Scanned Synthesis was the final gift to Csounders from “the father of computer
music”, Max Mathews. It offers sound designers a wide range of expressive and
dynamic timbral possibilities. In Csound, developers like Paris Smaragdis and
John ffitch expanded the capabilities in ways that Max Mathews had never imag-
ined, but would have made him very happy. They opened up new possibilities
in which this dynamically evolving surface can take many forms, be traversed
along many paths, be excited by any function, and re-energized by audio in-
put. Moreover, now, it’s many nodes can be mapped to any k-rate parameter,
and integrated into many of Csound’s table-driven and table-based synthesis
algorithms - thereby bringing new “life” to classic synthesis techniques. Using
scanned synthesis, a number of truly beautiful instruments have already been
designed, and some great pieces have been written. More are sure to follow, espe-
cially as understanding and appreciation continue to grow, and Csounders begin
to explore and discover the new ways to work with these enhanced opcodes.

measure of velocity and acceleration, and is calculated from the stiffness matrix - a
connection matrix, both assigning and weighting the connections. Note that positive
entries in the stiffness matrix increase acceleration.



Scanned Synthesis: Design and Enhancements 7

References

1. Bill Verplank, Max V. Mathews, and Robert Shaw. Scanned Synthesis. In Ioannis
Zannos, editor, ICMC2000, pages 368–371. ICMA, August 2000.

2. Richard Boulanger, Paris Smaragdis, and John ffitch. Scanned Synthesis: An Intro-
duction and Demonstration of a New Synthesis and Signal Processing Technique.
In Ioannis Zannos, editor, ICMC2000, pages 372–375. ICMA, August 2000.


	Scanned Synthesis Then & Now – The Design and Enhancement of Csound's Scanned Opcodes
	In the Beginning and At the End
	The First Wave of Enhancements
	The Second Wave of Enhancements
	The Third Wave of Enhancements
	The Enhanced Scanned Family of Opcodes and How they Work
	Designing the Connection Matrix
	An Example

	Conclusion


